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ABSTRACT 
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Two s a t e l l i t e s  have been supplied by the Goddard Space 
Flight Center with arrays of cube-corner ref lectors ,  and have 
been used as orbi t ing targets  for  ruby laser  radiation. The 
observed intensi ty  of ref lected radiation is in agreement 
with theory. 
is affected by target  geometry and atmospheric fluctuations, 
qual i ta t ive agreement was found with calculations of velocity 
aberration due t o  the s a t e l l i t e ' s  notion. lbe system has been 
used t o  determine s a t e l l i t e  range. 

Although the dis t r ibut ion of the reflected l i g h t  

1. IIITROPUCTION 

This paper is a preliminary report on a ser ies  of experix.ents now being performed as par t  of 

NASA's program i n  developing techniques for  space conununication, navigation, and tracking with l a s e r  

beams. 

techniques a d  some of the resul ts  may be very pertinent i n  discussing possible methods for  

identifying space objects. 

Although these objectives do not correspond t o  the primary aims of t h i s  Symposium, the 

Briefly, o w  objective was t o  place into o r b i t  s a t e l l i t e s  with as large an effect ive retro-  

re f lec t ing  area as we could. 

pulse of l igh t .  

measured t o  yield range. 

ref lected l i g h t  can also be photographed against a s t a r  background t o  yield precise angular 

position. F i r s t ,  it would 

const i tute  a precise  tracking tool  f o r  geodetic purposes and o r b i t  analysis; secondly, it would 

exercise many of the  elements of an opt ical  commmication system: laser  transmitters Of different 

types could be used as they were developed, receivers could be evaluated, means could be developed 

and checked f o r  aiming very narrow beams of coherent l igh t ,  and the attenuating and dispersive 

e f fec ts  of a h x p h e r i c  transmission could be studied. 

From a ground s ta t ion,  we would then illuminate the s a t e l l i t e  with a 

The reflected l i g h t  would be detected photoelectrically and i t s  time Of f l i g h t  

In a different mode of operation, not discussed i n  t h i s  paper, the 

This appeared t o  be a worthwhile project from our point of view. 

? 
'Lc 
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That w e  succeeded in  receiving l a s e r  light ref lected from these s a t e l l i t e s  i s  i l l u s t r a t e d  in 

Figure 1. 

laser, and the  lower trace the received photoelectric signal. 

seconds per large division, but the i n i t i a t i o n  of the lower one has been delayed by about seven 

milliseconds t o  account for the time-of-flight. 

of its early resul ts .  

The upper oscilloscope t race is a sample of the transmitted light from a pulsed ruby 

Each t race is swept a t  tm micro- 

'Ihis paper will describe the experiment and Some 

2. THE BEACON-EWLORFR SATELLITES 

Two ident ical  s a t e l l i t e s ,  designated by NASA code s-66, were orbited: Explorer 22 Was launched 

October 10, 1964 into an o r b i t  with incl inat ion 79.7", apogee no0 km, and perigee 939 b. 

Explorer 27 was launched April 29, 1965 into an orbi t  with incl inat ion 41°, apogee 1,318 h, and 

perigee 939 km. 

i t s e l f  along the l ines  of force of the ear th 's  magnetic f ie ld :  

points i n  the north-seeking direction (Figure 2 ) .  

horizontal near Washington, D. C. ,  a special array of ref lectors  was mounted on this end (Figure 3) 

t o  provide a large effect ive retroref lect ing area f o r  ground s ta t ions i n  north temperate locations. 

Although the primary mission of the s a t e l l i t e s  was t o  study the density dis t r ibut ion of electrons 

i n  the Ionosphere (Reference l), space and weight were made available for  the ref lect ing s t ructure  

(Additional design de ta i l s  are  contained i n  Reference 2 ) .  

By means of a permanent bar magnet, each s a t e l l i t e  is constrained t o  or ient  

One end of the symmetry axis SlWaYS 

Since the m e t i c  dip angle is about 70" below 

The array (Figure 4) consists of $0 cube corner prisms arranged over nine panels which form a 

truncated octagonal pyramid. 

about 18 inches, and i t s  height i s  about 10 inches. 

res is tant  fuzed quartz with aluminized ref lect ing surfaces, cut  a t  the corners t o  y ie ld  hexagonal 

faces for optimum area usage. They are about one inch across f l a t s .  

A t  the base of the pyramid, the diameter of an inscribed c i rc le  is 

The individual prisms are  of radiation- 

A cube corner ref lector  has the property that each ray of light entering its aperture suffers 

An incident three ref lect ions and leaves in exactly the opposite direct ion f r o m  which it entered. 

beam of p a r a l l e l  l i g h t  re t roref lected from the hacan-Explorer array, however, w i l l  not remain 

perfectly collimated. The reflected l i g h t  w i l l  diverge because of d i f f rac t ion  effects ,  non- 

orthogonality of the ref lect ing faces, and o ther  op t ica l  imperfections. 

Fn the laboratory by illuminating individual cubes and the e n t i r e  s a t e l l i t e  w i t h  collimated l igh t ,  

and then examining the ref lected energy d is t r ibu t ion  i n  the far f ie ld .  The gross character of the 

This spreading ma measured 

~ , 

variation of intensi ty  w i t h  angular displacement frcan the incident beam is sham in Figure 5. * 
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FIGVRE 1. PHOTOELECTRIC DETECTION OF REFLECTED LASER RADIATION FROM SATELLITE EXPLORER 27. 
Upper trace shows two transmitted pulses, lower trsce, delayed by about 7 milliseconds, 
shows received reflection of same two pulses. 
not significant. 

Ripple is instrumental in nature, and 

31 3 



z 
0 
m 

c a 

m a 

n 
a 

N - - 
c 
v) 

z 
c 

a 

*o 
*o 

- 
m 

0 

I 
v) 

\ \ 
/ 

/ 

/ I 
/ \ 

\ / / 
\ 
\ 

314 



, 4 

FIGURE 3 .  THE BEACON-EXPLORER-B SATELLITE (EXE'LORER 2 2 ) ,  WITH ARRAY OF CUBE-COWEZ 
REFLECTORS ON NORTH-SEEKING END. 
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REFLECTED INTENSITY DISTRIBUTION 
vs 

ANGLE O F  INCIDENCE 

FIGURE 5 .  DISTRIBUTION OF ENERGY DENSITY IN THE LIGHT REFLECTED FROM THE SATELLITE ARRAY 
AS A FUNCTION OF ANGULAR DISPLACEXEN!C FROM THE AXIS,  WHEN THE ARRAY IS ILWMIN&TED BY 
A COLLIMATED BE4M PARALLEL M THE AXIS.  
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Unfortunately t h i s  does not show the f ine  granular or mottled appearance observed when the ref lectors  

were i l lwdnated w?th l a s e r  l igh t .  

patterns arising from diffract ion a t  the prism apertures and a t  the intersections of the re f lec t ing  

planes, and from interference b e h e h  reflections from di f fe ren t  prisms superimposed on one another. 

The detector aperture used t o  obtain Figure 5 subtended Illany of these fluctuations, and so it is 

useful as a qualitative indication of the smoothed overaU distribution. 

then examined clmely,  the reflec*tec l i g h t  shared k t r i c a t e  

The effective ref lect ing area of the s a t e l l i t e s  as the l i n e  of s ight  makes different  angles 

with respect t o  the symmetry axis ,  was also measured in the laboratory and is  sham i n  Figure 6 .  

This is the equivalent area of a plane 1Wh ref lect ing mirror oriented perpendicularly to the 

incident beam so as t o  r e f l e c t  l i g h t  back t o  the source. 

incident beams approaching across one of the octagon corners or across one of the f l a t s ,  

respectively, and show t h a t  it i s  only the angle which the beam makes with the axis which is 

s ignif icant .  

area, and the figure shows tha t  it actual ly  remains above t h i s  value out t o  angles as large as 

70  degrees from the axis, which corresponds t o  a large portion of every pass over a stat ion.  

The two cases in the figure re fer  to 

In qual i ta t ive calculations of signal intensi ty ,  a value of 80m2 is used for  the 

3. THE GROUND STATION 

The transmitter-receiver used for  s66 is  i l lus t ra ted  i n  Figure 7. A Nike-Ajax radar 

pedestal was modified for  t h i s  purpose: 

aperture, 300-inch focal  length cassegrain telescope was mounted on the cent ra l  support disc. 

second small cylinder seen below the disc  i n  the figure is  par t  of the ruby l a s e r  transmitter. 

After removing the  dish and radar electronics, a 16-inch 

A 

The laser used a 6-1/2 inch ruby rod, 3/8 inch i n  diameter, and an FX-55 f lash lamp in a 

4-inch diameter cyl indrical  ref lect ing cavity. 

water. 

exhibited multiple spiking even when operating under optFmum conditions. 

was energized with 1200 joules, two or three spikes were produced in a s ingle  burst ,  having a total 

output energy of 0.3 joules, each pulse being about 50 moseconds in duration and pulse separated 

by 500 nsec. 

6943 Angstrom output radiation into a f a i r l y  uniform beam contained within a cone of 1.2 X 10- 

radian, f u l l  angle. 

Both the ruby and lamp were cooled with purif ied 

It was “&-switched“ with a total-internal-reflection prism rotat ing a t  24,000 rpm, but 

Typically, when the lamp 

The transmitter was flashed a t  a ra te  of one pps. An opt ica l  system collimated the 

3 
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FIGURE 7.  TRANSMITTING LASER AND RECJXVING TELESCOPE, MOURTED ON A MODIFIED NIm-AJAX RADAR 
PEDESTAL. 

3 20 



During a pass, the mount which is equipped with d i g i t a l  encoders is directed toward the 

expected position of the s a t e l l i t e  by a programmer fed with uunched paper tape. 

accuracy of the munt and o r b i t a l  predictions enables us t o  point t o  within one or two milliradians. 

Operators looking through auxi l iary viewing scopes can then see the s a t e l l i t e  i n  ref lected sunlight 

and can make smal l  corrections t o  keep the s a t e l l i t e  image on cross hairs  so tha t  it is illuminated 

by the transmitted laser beam. 

together, the s a t e l l i t e  i s  then also in the receiver f i e l d  of view. 

photomultiplier together with a f i l t e r  having a 10 Angstrom band-pass. 

In order t o  display the received signal and to record data, the equipment schematically shown 

Usually, the 

Since the transmitter and receiver are carefully boresighted 

The receiver used a 9558A 

i n  Figure 8 was used. 

then used f o r  several purposes. 

as a record of the transmitted radiation. Second, it star ted a Time-Internal uni t  which would be 

necessary f o r  measuring range. Third, it s tar ted a range-gate generator, which was programmed with 

the expected time-of-flight for the round t r i p  t o  the s a t e l l i t e  and back. 

the ref lected s ignal  was expected, the output of the range-gate generator triggered the sweep on 

the second t race of the oscilloscope, and de-inhibited the "Stop" c i r c u i t  of the Time-Interval 

uni t ,  which had been protected against noise pulses up t o  that  time. 

A photodiode picked off a s m a l l  portion of each transmitted pulse, which was 

F i r s t ,  it was  displayed on one t race of a double beam oscilloscope 

Ten microseconds before 

4. SIGNAL DJTTNSITY 

The ref lected energy collected by the receiver i n  each pulse i s  given by an equation of the 

form 

E t ,  the transmitted energy i n  a single pulse, was taken as 0 . 1  joule in th i s  conservative estimate. 

A, is the ta rge t  re t roref lect ing area and u i s  i t s  ref lect ivi ty .  Their product has already been 

is assumed to  be 8ocm . 2 i l lus t ra ted  as a function of angle of incidence i n  Figure 6 .  A,& 

At is the 16-inch telescope receiving aperture, 0.114~1~. 

r2 is  the two-way atmospheric transmission, assumed t o  be 0.5 a t  t h i s  wavelength and for  typical  

elevation angles. 

f is  the receiving telescope transmission, 0.8. 

A is  the f i l t e r  pass-band transmission, 0.5 .  

et is the half-angle of the divergence cone of the transmitted beam, 6 X radians. We have 

assumed, for  t h i s  calculation, tha t  all the energy is  uniformly spread i n  t h i s  cone. 

eC is the half-angle of the divergence cone of the reflected bean. From Figure 5 ,  we have assumed 

a value of 5 1 radians, and again consider all the energy uniform within the cone. 

R is the s a t e l l i t e  range, assumed t o  be 1100 km. for  t h i s  calculation. 
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FIGURE 8. BLOCK DIAGRAM OF ELEcrmONIC EQUIFMEXl! FOR SIGNAL DISPLAY AND SATELLITE RANGE 
-. N o t  shown is movie camera t o  photograph oscilloscope. 
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'he values l i s t e d  above lead t o  a signal of 1 .4  X joules, or about 5000 photons per 

pulse. 

efficiency of about 2%, so we may expect about 100 photoelectrons t o  be released i n  each pulse. 

These are  then amplified by a factor  of about lo6 i n  the multiplication s t ructure  of the tube, 

giving r i s e  t o  pulses of about 1.6 x lo-ucOulOmb. 

of about 0.3 volts  across the  load capacitance of our detector. 

large as 0.1 vol t .  

An S-20 photocathode surface, such as i n  our 9558A photomultiplier, has a quantum 

This charge would be expected t o  produce pulses 

Actually we observed spikes as 

(The sens i t iv i ty  of the lower trace i n  Figure 1 is 20 millivolt/cm.) 

We consider the agreement reasonably good i n  view of some of the vague assumptions t h a t  have 

been made i n  the calculation. 

course of t h i s  program. 

More careful estimates and measurements w i l l  be made during the 

Signals could be received and s a t e l l i t e  ranges determined for  many points during the pass 

of a s a t e l l i t e  over the s ta t ion.  

of the transmitted pulses yielded range measurements. 

Figure 9 is a portion of a good pass during which over 80$, 

5. EFFECTS OF VELOCITY ABERRATION 

Because of the relat ive velocity of the s a t e l l i t e  with respect t o  the transmitter on the 

ground, the ref lected l i g h t  from the on-board retrodirectors does not f a l l  back onto the transmitter 

but suffers  a displacement. 

transit-time ef fec t ,  o r  velocity aberration. To observe t h i s  effect ,  a second ident ical  receiver 

was ins ta l led  a t  the ground s ta t ion.  The two receivers were displaced from each other by 85 fee t  

along a north-south l ine.  The laser  transmitter was mounted alongside the receiver on the south 

mount, and boresighted t o  it, while the receiver on the north mount was slaved t o  the south, so 

that a l l  three opt ica l  systems always pointed in  the same direction. 

This has been called, a t  various times, the Bradley effect ,  the  

Each of the receivers w i l l  thus f ind i t s e l f  displaced by varying amounts from the center of 

the  return spot, and t h i s  w i l l  a f fec t  the received intensity. 

w a s  observed, we found a t  l e a s t  qualitative agreement with theory. We sha l l  estimate the 

magnitude of t h i s  e f fec t  by considering the apparent difference i n  the direction of a ray of 

l i g h t  as observed from the ground and from the s a t e l l i t e .  

Although a great deal of sca t te r  

In Figure 10, the s a t e l l i t e  velocity is taken paral le l  t o  the x-axis on the ground. Another 

p a r a l l e l  set of coordinates is  assumed t o  be moving with the s a t e l l i t e .  The incident beam of 

l i g h t  is a vector whose t i p  is instantaneously a t  position (x, y) as seen from the ground, and a t  

(xl, $) as seen from the moving system. 

and (xl, p) respectively i n  the two systems. 

formations. 

The velocity vector of the l i g h t  beam then is (4, y )  
Special r e l a t i v i t y  provides the necessary t rans-  
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X 
t'= t - p -  c 

The components of  the velocity of the ray of l ight  are  then 

From the ground, the beam 

(4) 

but i n  the moving system, 

A t  t h i s  point, it is 

appeared t o  have the angle 8, where 

t m e = &  

the angle is given by 

tan 8' = - Cx* = Cx - v ( 5 )  
cy- 

apparent tha t  the difference between a c lass ica l  and a r e l a t i v i s t i c  

calculation of t h i s  e f fec t  cannot be significant. The veloci ty  of the s a t e l l i t e  i n  its o r b i t  is 

about 7.5 hn/sec. This gives P a value of 2.5 X and a value of 6 X 10-l'- Clearly, it 

should be ignored i n  eq. ( 5 ) ,  and the result becomes ident ical  to t h a t  predicted classical ly .  
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The action of the ret roref lector  is to reverse the direct ion of the  beam as it is observed i n  

- the  satellite's coordinates, i.e., each of the primed components is reversed. 

dropped the r e l a t i v i s t i c  affectation. ) 

(Notice ye have 

=I' - -5; = - = J 
In  returning t o  the earth, we must transform the ray once more back t o  the ground coordinates, 

because the ground observer w i l l  automatically add the s a t e l l i t e ' s  velocity t o  whatever vector 

veloci ty  was measured on the s a t e l l i t e .  

The angle 'a t  which the beam approaches the ground is  given by 

Figure 11 shows that eq. ( 9 )  can be given a simple geometrical interpretat ion.  

is the displacement from the transmitter of the spot produced by the ref lected ray as it in te r -  

sec ts  the x-axis. 

The distance 

From the twv t r iangles  it can be seen that 

Our coordinate system was del iberately chosen w i t h  the satellite veloci ty  p a r a l l e l  t o  the 
A 

x-axis, and w i t h  the line-of-sight i n  the x-y plane. 

p a r a l l e l  to V , and w i t h  a mgnitude given by (10). 

Figure 12, 

receivers both a t  S and a t  N, the  north telescope. 

and the  reflected beam paeees through the t i p  of the vector # , drawn as originat ing f r o m  S and 

p a r a l l e l  to 

In general, we can s a y  that $ is a vector 

The general s i tua t ion  is pictured i n  
4 

The transmitter is located a t  s , which is the locat ion of our south mount. There are 

a 
The transmitted beam t rave ls  along vector R, 

A 

A . The vector b i a  the posi t ion of the second receiver re la t ive  to the transmitter. 
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VELOCITY ABERRATION CAUSED BY 
MOVING RETROREFLECTOR 
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FIGURE 10. DERIVATION OF ANGUIAR DISF'IACXNENT OF REFL?3(;TED BE4.M DUE To SATE!LI,ITE MOTION. 
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FIGLTRE 11. VELOCITY ABERRATION. Geometric relations. 
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We wish to perform the following calculation: I f  we can f ind the angular displacement of each 

of the receivers fran the center of the  ref lected ray, then the  intensi ty  of the s iepa l  received 

a t  each telescope could be compared with the angular intensi ty  dis t r ibut ion of the ref lected l igh t  

f ran  the s a t e l l i t e ,  as measured with collimated light i n  the laboratory (see Figure 5). 

results would then be expected t o  be consistent with our interpretat ion of the veloci ty  aberration. 

These 

The angular displacement of S from the center of the beam is the component of 6 perpendicular 
z 

t o  R, divided by \R(  . To f ind th i s ,  we write 

which is  a unit vector perpendicular to the plane o f t  and ?. Next, 

A -L 

is a u n i t  vector i n  the plane of R and 8 , but perpendicular t o  R. 

perpendicular t o  R is now simply 

The component of 8 
-L 

4 - L  

8, = S . 5  

Calculating this i n  d e t a i l  is not quite so simple. We have, put t ing (ll) into (U), 

Use the vector ident i ty  

(14) then becapes 

and its Mgular d i s p l a c e n t  from the center of the return beem is 
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Similarly, to find the angular displacement of the second receiver Pram the center of the ref lected 

A -  ray, we put 
4 

y = s - a ,  

By following the steps leading t o  (16), we would find t h a t  the angular displacement of the second 

receiver is 

I n  pr inciple ,  (16) and (18) should be suff ic ient  to allow us to ver i fy  t h a t  the relative 

in tens i t ies  observed a t  our north and south mounts &re consistent with the veloci ty  aberration 

e f fec t .  

We shall apply some simplifying assumptions t o  evaluate (16) and (18) f o r  the BE-C and BE-B 
A 

passes of May 10, 1965. 

ax is  in 

right-hand character), and the &z-axis ver t ica l ly  upward. 

instantaneous range R,azimuth 9, and zenith angle 1 : 

A Cartesian coordinate system is s e t  up with S as origin, the A X  - 
the horizontal north direction, the i y - a x i s  horizontally to the west ( to  maintain a 

a 

In terms of the s a t e l l i t e ' s  

R, = R s i n  c o s 9  

% = R s i n k  s i n q  (19) 

Rz = R cos b 
The BE-C pass of May 10, 1965 is i l lus t ra ted  i n  polar coordinates i n  Figure 13. 

our calculation, without introducing too great an error ,  i f  we assume t h a t  the s a t e l l i t e  velocity 

during the pass is constant a t  7.3 km/sec. , i n  a west-to-east direction, and para l le l  t o  the 

We can simplify 

(16) then becomes 

If we insert the value of f from ( lo) ,  we obtain 

d ,  = at I\ - rc~sz(3-~q])+ 
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VELOCITY DISPLACEMENT OF REFLECTED RAY 

/T 
A 

FICURE 12. VELOCITY ABERRATION - VDXOR RELATIONSKTFS 
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BE-C 5/10/65 
NORTH 

FIGURE 13. m m  m OF VISIBLE FQKTION OF PASS OF EXPLORER 27 o m  GODIXRD, OB 
THE MORNING OF MAY 10, 1965. 
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a 
I n  th i s  example, the vector 4 is the displacement of the north mount from the south 

f = Z &  
L 

The vector y is now 

- - r L  

(22) 

(23) 

(18) becomes 

(21) and (24) are  the equations needed t o  analyze the BE-C pass. 

The appearance of typical  signals received simultaneously a t  the two receivers during the 

pass is  shown i n  Figure 14. 

from an oscilloscope record of t h i s  type. 

receivers is compared with the intensi ty  ra t ios  we might expect from the displacements i n  

equations (21) and (24), we f ind a p lo t  as i n  Figure 16. 

that  the intensi ty  a t  the south mount is generally larger than at  the north mount, as would be 

expected. 

Each of the dots i n  the range vs. time p lo t  of Figure 15 w a s  derived 

When the r a t i o  of the in tens i t ies  of signals i n  the two 

Qualitatively, a t  l e a s t ,  we Can see 

Similarly, the BE-B pass of May 10, 1965 is plot ted on polar coordinates i n  Figure 17. For 

simplicity, this time we w i l l  assume that the veloci ty  vector i s  horizontal and i n  the s0uth-b-  

north direction 
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FIGURE 14. LASE3 REFLECTION SIGNALS FROM E X P L O m  2: RECEIVED SIMULTANEOUSLY AT 
Trsnsmitter was on same mount as South receiver RECEIVERS SEP.RATED BY 85 FT. 

(bot+%n trac?). Sweep speed i s  2 microseconds p e r  large division. 
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RATIO OF THE NORMALIZED RECEIVED 
SIGNAL AMPLITUDE (anla,) 

OF THE 
NORTH AND SOUTH MOUNTS 

BE-C 5/10/65 
7.01 . I I I 

3.0 1 
. EXPECTED RAT11 

ah47 min 40 min 49 min 50 min 

TIME OF DAY (GMT) 

FIGURE 16. RATIO OF SIGNAL -E AT M)ETH RDZIVXR, an To SIGNAL AT SWTH RECEIVER as, 
FOR EACH IASER W E  REFLBXION. 
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FIGURE 17. POLAR PLOT OF VISIBLE PORTION OF THE PASS OF EXPIDRER 22 o m  GODDARD ON THE 
M O ~ N G  OF MAY io, 1965. 
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(26) and (28) are the equations needed t o  analyze the BE-B pass of May 10, 1%5. 

A suf f ic ien t  number of returns was received during t h i s  pass to produce the range vs. time 

p l o t  i n  Figure 18. 

i n t e n s i t i e s  because the ref lected spot had been displaced t o  the north. 

to substantiate the e f fec t  of veloci ty  aberration qualitatively. 

continuing a t  this time. 

Figure 19 shows tha t  the north receiving mount i n  t h i s  case received greater 

Both figures thus appear 

More thorough studies are  
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RATIO OF NORTH AND SOUTH MOUNT 
RECEIVED LASER SIGNALS 

AMPLITUDE NORTH MOUNT (CORRECTED) 
AMPLITUDE SOUTH MOUNT 

BE-6 SATELLITE 5/10/65 7 

6 Note: 

4 

TIME OF DAY (GMT) 

F I ~  19. 
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